Cutting Plane Methods and Subgradient Methods

نویسنده

  • John E. Mitchell
چکیده

Interior point methods have proven very successful at solving linear programming problems. When an explicit linear programming formulation is either not available or is too large to employ directly, a column generation approach can be used. Examples of column generation approaches include cutting plane methods for integer programming and decomposition methods for many classes of optimization problems. We discuss the use of interior point methods in a column generation scheme. Semidefinite programming relaxations of combinatorial optimization problems are often tighter than linear programming relaxations. We describe some research in using SDP relaxations to find exact solutions to combinatorial optimization problems. Semidefinite programs are expensive to solve directly, so we also consider cutting surface approaches to solving them. Finally, we look at recent smoothing techniques for solving nonsmooth optimization problems using a subgradient approach; these methods have some links to cutting surface approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer Programming

A short introduction to Integer Programming (IP). Problems leading to IP models. Some modelling tricks and reformulations. Geometry of linear IP. TUM matrices. Brief notes on polyhedral analysis. Separation theory. Chvatal cut hierarchy, Gomory cuts, Disjunctive cuts, RLT cut hierarchy. Iterative methods: Branch-and-Bound, Cutting Plane, Branch-and-Cut, Branch-and-Price. Lower bounds: Lagrangia...

متن کامل

Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming

Abstract. In this paper we present augmented Lagrangians for nonconvex minimization problems with equality constraints. We construct a dual problem with respect to the presented here Lagrangian, give the saddle point optimality conditions and obtain strong duality results. We use these results and modify the subgradient and cutting plane methods for solving the dual problem constructed. Algorit...

متن کامل

Spectral bundle methods for non-convex maximum eigenvalue functions: first-order methods

Many challenging problems in automatic control may be cast as optimization programs subject to matrix inequality constraints. Here we investigate an approach which converts such problems into non-convex eigenvalue optimization programs and makes them amenable to non-smooth analysis techniques like bundle or cutting plane methods. We prove global convergence of a first-order bundle method for pr...

متن کامل

Cross-Layer Optimization on Routing and Power Control of MIMO Ad Hoc Networks

Abstract MIMO-based systems have great potential to improve network capacity for wireless mesh networks (WMNs). Due to unique physical layer characteristics associated with MIMO systems, network performance is tightly coupled with mechanisms at physical layer and link layer. So far, research on MIMO-based WMNs is still in its infancy and little results are available in this important area. In t...

متن کامل

Multiple Cuts in Separating Plane Algorithms

This paper presents an extended version of the separation plane algorithms for subgradientbased finite-dimensional nondifferentiable convex blackbox optimization. The extension introduces additional cuts for epigraph of the conjugate of objective function which improve the convergence of the algorithm. The case of affine cuts is considered in more details and it is shown that it requires soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009